Kapitel 13

3D-Transformationen

Wie im zweidimensionalen Fall, werden die Definitionspunkte der Objekte als Spaltenvektoren mit homogener Koordinate geschrieben. Die notwendigen Transformationen werden wieder durch Matrizen realisiert. Im dreidimensionalen Fall handelt es sich um 4 × 4-Matrizen.

13.1 Translation

Mit homogenen Koordinaten läßt sich der um den Translationsvektor $\vec{t} = (t_x t_y t_z)^T$ verschobene Punkt P = (x, y, z)

$$(x', y', z') := (x + t_x, y + t_y, z + t_z)$$

in der folgenden Form darstellen:

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = T(t_x, t_y, t_z) \cdot \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

mit

$$T(t_x, t_y, t_z) = \begin{pmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

13.2 Skalierung

Gegeben: Drei Skalierungsfaktoren $s_x \neq 0$, $s_y \neq 0$ und $s_z \neq 0$.

Es liege der Fixpunkt im Ursprung:

$$(x', y', z') := (x \cdot s_x, y \cdot s_y, z \cdot s_z)$$

Die daraus resultierende Transformationsmatrix lautet:

$$S(s_x, s_y, s_z) = \begin{pmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Es liege der Fixpunkt bei (Z_x, Z_y, Z_z) :

- 1. Translation um $(-Z_x, -Z_y, -Z_z)$,
- 2. Skalierung um (s_x, s_y, s_z) ,
- 3. Translation um (Z_x, Z_y, Z_z) .

Die Transformationsmatrix lautet:

$$T(Z_x, Z_y, Z_z) \cdot S(s_x, s_y, s_z) \cdot T(-Z_x, -Z_y, -Z_z)$$

13.3 Rotation

Rotation um die z-Achse

$$x' := x \cdot \cos(\delta) - y \cdot \sin(\delta)$$

 $y' := x \cdot \sin(\delta) + y \cdot \cos(\delta)$
 $z' := z$

Die daraus resultierende Transformationsmatrix lautet:

$$R_z(\delta) = \begin{pmatrix} \cos(\delta) & -\sin(\delta) & 0 & 0\\ \sin(\delta) & \cos(\delta) & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Rotation um die x-Achse

$$x' := x$$

$$y' := y \cdot \cos(\delta) - z \cdot \sin(\delta)$$

$$z' := y \cdot \sin(\delta) + z \cdot \cos(\delta)$$

Die daraus resultierende Transformationsmatrix lautet:

$$R_{x}(\delta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\delta) & -\sin(\delta) & 0 \\ 0 & \sin(\delta) & \cos(\delta) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

13.3. ROTATION 155

Rotation um die y-Achse

$$x' := z \cdot \sin(\delta) + x \cdot \cos(\delta)$$

 $y' := y$
 $z' := z \cdot \cos(\delta) - x \cdot \sin(\delta)$

Die daraus resultierende Transformationsmatrix lautet:

$$R_{y}(\delta) = \left(egin{array}{cccc} \cos(\delta) & 0 & \sin(\delta) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\delta) & 0 & \cos(\delta) & 0 \\ 0 & 0 & 0 & 1 \end{array}
ight)$$

Rotation um eine beliebige Achse

Voraussetzung: Die Rotationsachse stimme nicht mit einer der Koordinatenachsen überein.

Idee: Transformiere Rotationsachse und Objekt so, daß die Rotationsachse mit der *z*-Achse übereinstimmt, rotiere um vorgegebenen Winkel δ, transformiere zurück.

- 1. Translation von Rotationsachse (und Objekt), so daß die Rotationsachse durch den Ursprung läuft.
- 2. Rotation der Rotationsachse um die x-Achse in die xz-Ebene.
- 3. Rotation der Rotationsachse um die y-Achse in die z-Achse.
- 4. Rotation des Objekts um die z-Achse mit Winkel δ .
- 5. Rücktransformation des gedrehten Objekts durch Anwendung der inversen Transformationen der Schritte (3), (2) und (1).

Ist die Rotationsachse durch die Punkte P_1, P_2 gegeben, so gilt

$$\vec{v} = P_2 - P_1 = \begin{pmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{pmatrix}.$$

Die Länge dieses Vektors lautet

$$|\vec{v}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$

Die Komponenten des zugehörigen Einheitsvektors

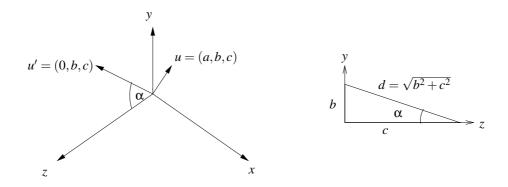
$$\vec{u} = \frac{\vec{v}}{|\vec{v}|} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}, |\vec{u}| = 1$$

lauten daher

$$a = \frac{x_2 - x_1}{|\vec{v}|}, \ b = \frac{y_2 - y_1}{|\vec{v}|}, \ c = \frac{z_2 - z_1}{|\vec{v}|}.$$

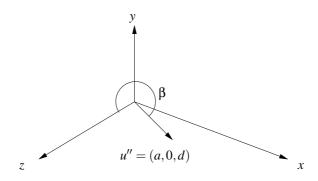
Schritt 1 läßt sich durch die Translation $T(-x_1, -y_1, -z_1)$ durchführen. Dadurch wird P_1 , Ausgangspunkt des Einheitsvektors \vec{u} , in den Ursprung verschoben.

Für Schritt 2 sind Sinus und Cosinus des Rotationswinkels α erforderlich, der zwischen der Projektion \vec{u}' von \vec{u} auf die yz-Fläche und der z-Achse, repräsentiert durch den Vektor $\vec{u}_z = (0\ 0\ 1)^T$, liegt.

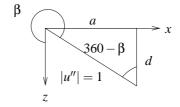


$$\Rightarrow \cos(\alpha) = \frac{c}{d}$$
$$\Rightarrow \sin(\alpha) = \frac{b}{d}$$

Nach Schritt 2 befindet sich der ursprüngliche Vektor \vec{u} als \vec{u}'' in der xz-Ebene:



Für Schritt 3 (Rotation um y-Achse) benötigt man Sinus und Cosinus des Rotationswinkels β . Positive Winkel ergeben eine Rotation gegen den Uhrzeigersinn, wenn man aus Richtung der Positiven y-Achse auf die xz-Ebene schaut:



$$\Rightarrow \cos(\beta) = \cos(360^{\circ} - \beta) = d$$
$$\Rightarrow \sin(\beta) = -\sin(360^{\circ} - \beta) = -a$$

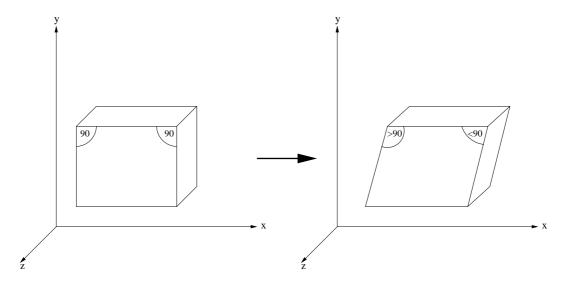
Nach den ersten drei Schritten ist die Drehachse mit der *z*-Achse identisch, so daß Schritt (4) mit der Rotationsmatrix $R_z(\delta)$ durchgeführt werden kann. Schritt (5) beinhaltet die Anwendung der inversen Transformationen.

Die Rotation um die Achse $\vec{v} = \overline{P_1 P_2}$ um den Winkel δ läßt sich daher wie folgt darstellen:

$$R(\vec{v}, \delta) = T(P_1)R_x^{-1}(\alpha) \cdot R_y^{-1}(\beta) \cdot R_z(\delta) \cdot R_y(\beta) \cdot R_x(\alpha) \cdot T(-P_1) \cdot R_z(\delta) \cdot R_y(\delta) \cdot R_z(\delta) \cdot R_z(\delta)$$

13.4 Transformation der Normalenvektoren

Die Normalenvektoren müssen bei der Transformation von Objektpunkten ebenfalls abgebildet werden. Wenn diese Transformation z.B. eine nicht-uniforme Skalierung ist, dann bleiben die Winkel zwischen einzelnen Flächen nicht erhalten.



Winkeluntreue unter nicht uniformer Skalierung

Wenn die Normale \vec{n} mit derselben Matrix M transformiert wird, wie die Objektpunkte einer Fläche F, ist \vec{n} anschließend evtl. nicht mehr senkrecht zu F.

Wie muß \vec{n} transformiert werden?

Seien P_1, P_2 zwei Punkte der Ebene mit Normalenvektor \vec{n} . Sei $\vec{r} = P_2 - P_1$.

Offenbar gilt

$$\vec{n}^T \cdot \vec{r} = 0$$

Daraus folgt

$$\Rightarrow \vec{n}^T \cdot M^{-1}M \cdot \vec{r} = 0$$

Durch zweimaliges Transponieren erhält man

$$((M^{-1})^T \cdot \vec{n})^T \vec{r'} = 0$$

Für den transformierten Vektor $\vec{n'}$ muss offenbar gelten

$$\vec{n'}^T \cdot \vec{r'} = 0$$

Aus den beiden Gleichungen folgt daher

$$(M^{-1})^T \cdot \vec{n} = \vec{n'}$$

Also muss bei einer Fläche der Normalenvektor \vec{n} mit der transponierten Inversen der Transformationsmatrix M transformiert werden.